Oceans, aerosols and clouds

Ocean life, and particularly microscopic plankton, influences climate in the long, medium, and short term: in the long term by shaping the element cycles that are essential to the functioning of Earth as a system; in the medium term, through the exchange with the atmosphere of greenhouse gases; and in the short term, through the emission of trace gases and particles that affect the chemical and optical properties of the atmosphere. Indeed, the ocean represents a major source of gaseous sulfur, nitrogen, halogens and hydrocarbons to the troposphere and, being as immense as it is, it rivals the continents as an emitter of primary particles in the form of salt crystals, organic polymers and microorganisms. This breath of the sea regulates the oxidative capacity of the atmosphere and influences the energy balance of the planet through its role in aerosol formation. Aerosols (tiny particles suspended in the air) are powerful climate agents because they absorb and scatter solar radiation and, most importantly, they seed cloud condensation and regulate the sunlight reflectivity of clouds. International efforts for the integration of global data from fixed observing stations, research vessels and satellites, have made it clear that, as surprising as it may seem, marine life does not only influence the ocean’s behaviour but also leaves a daily footprint in the sky; another piece of evidence about the fascinating architecture of the complex system that is our living planet.


Dall’Osto M., R. Lange, C. Geels, D.C.S. Beddows, R.M. Harrison, R. Simó, J.K. Nøjgaard, D. Boertmann, H. Skov, A. Massling (2018). Regions of open water and melting sea ice drive new particle formation in North East Greenland. Scientific Reports 8: 6109.

Dall’Osto M., D. Beddows, P. Tunved, R. Krejci, J. Ström, Y.J. Jun Yoon,  K.-T. Park, S. Becagli, R. Udisti, C.D. O’Dowd, R. Simó, R.M. Harrison (2017). Arctic sea ice melt leads to atmospheic new particle formation. Scientific Reports 7: 3318.


Simó R. (2011). The role of marine microbiota in short-term climate regulation. In The Role of Marine Biota in the Functioning of the Biosphere (C. Duarte, ed.). Fundación BBVA, Rubes Ed., Bilbao, p. 107-130. ISBN 978-84-92937-04-2.


Fossum K.N., J. Ovadnevaite, D. Ceburnis, M. Dall’Osto, S. Marullo, M. Bellacicco, R. Simó, A. Zuend, C. O’Dowd (2018). Summertime primary and secondary contributions to Southern Ocean cloud condensation nuclei. Scientific Reports 8: 13844.

Mahajan A.S., S. Fadnavis, M. Thomas, L. Pozzoli, R. Simó, S.-J. Royer, A. Saiz-Lopez (2015). Quantifying the impacts of an updated global dimethylsulfide (DMS) climatology on cloud microphysics and aerosol radiative forcing. Journal of Geophysical Research Atmos. 120: 2524–2536.


Dall’Osto M., D.C.S. Beddows, A. Asmi, L. Poulain, L. Hao, E. Freney, J.D. Allan, M. Canagaratna, M. Crippa, F. Bianchi, G. de Leeuw, A. Eriksonn, H.C. Hansson, J.S. Henzing, C. Granier, P. Laj, T. Onasch, A. Prevot, J.P. Putaud, K. Sellegri, E. Swietlicki, M. Vidal, A. Virtanen, K. Zemankova,  R. Simó, D. Worsnop, C. O´Dowd, M. Kulmala and R.M. Harrison (2018). Novel insights on new particle formation derived from a pan-European observing system. Scientific Reports 8:1482.

Dall’Osto M., R. Simó, A. Saiz-López, R.M. Harrison, D.C.S. Beddows, R. Lange, H. Skov, J. K. Nøjgaard, I.E. Nielsen, A. Massling (2018). Abiotic and biotic sources influencing spring new particle formation in North East Greenland. Atmospheric Environment 190: 126-134.


Rodríguez-Ros P., P. Cortés, C.M. Robinson, S. Nunes, C. Hassler, S.-J. Royer, M. Estrada, M.M. Sala, R. Simó (2020). Distribution and drivers of marine isoprene concentration across the Southern Ocean. Atmosphere 11: 556.

Lennartz S.T., C.A. Marandino, M. von Hobe, M.O. Andreae, K. Aranami, E. Atlas, M. Berkelhammer, H. Bingemer, D. Booge, G. Cutter, P. Cortés, S. Kremser, C. Law, A. Marriner, R. Simó, B. Quack, G. Uher, H. Xie, X. Xu (2020). Marine carbonyl sulfide (OCS) and carbon disulfide (CS2): a compilation of measurements in seawater and the marine boundary layer. Earth System Science Data 12: 591–609

Dall’Osto M., R. Airs, R. Beale, C. Cree, M. Fitzsimons, D. Beddows, R. Harrison, D. Ceburnis, C. O’Dowd, M. Rinaldi, M. Paglione, A. Nenes, S. Decesari, R. Simó (2019). Simultaneous detection of alkylamines in the surface ocean and atmosphere of the Antarctic sympagic environment. ACS Earth and Space Chemistry 3 : 854-862.

Lennartz S.T., C.A. Marandino, M. von Hobe, P. Cortés, B. Quack, R. Simó, D. Booge, A. Pozzer, T. Steinhoff, D.L. Arévalo-Martínez, C. Kloss, A. Bracher, R. Röttgers, E. Atlas, K. Krüger (2017). Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide. Atmospheric Chemistry and Physics 17: 385–402.

Prados-Roman C., C.A. Cuevas, T. Hay, R.P. Fernandez, A.S. Mahajan, S-J. Royer, M. Galí, R. Simó, J. Dachs, K. Großmann, D.E. Kinnison, J-F. Lamarque, A. Saiz-Lopez (2015). Iodine oxide in the global marine boundary layer. Atmospheric Chemistry and Physics 15: 583–593.

Lana A., T.G. Bell, R. Simó, S.M. Vallina, J. Ballabrera-Poy, A.J. Kettle, J. Dachs, L. Bopp, E.S. Saltzman, J. Stefels, J.E. Johnson, P.S. Liss (2011). An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochemical Cycles 25, GB1004.

Vallina S.M., R. Simó, M. Manizza (2007). Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warming. Proceedings of the National Academy of Sciences USA 104: 16004-16009.

Gabric A., R. Simó, R. Cropp, T. Hirst, J. Dachs (2004). Global estimates of the oceanic emission of DMS under enhanced greenhouse conditions. Global Biogeochemical Cycles 18, GB2014.

Simó R., J. Dachs (2002). Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochemical Cycles 16: 1078.


Park J., M. Dall’Osto, K. Park, J.-H. Kim, J. Park, K.-T. Park, C.Y. Hwang, G. Jang, Y. Gim, S. Kang, S. Park, Y.K. Jin, S.S. Yum, R. Simó, Y.J. Yoon (2019). Arctic primary aerosol production strongly influenced by riverine organic matter. Environmental Science and Technology 53: 8621-8630


Decesari S., M. Paglione, M. Rinaldi, M. Dall’Osto, R. Simó, N. Zanca, F. Volpi, M.C. Facchini, T. Hoffmann, S. Götz, C.J. Kampf, C. O’Dowd, J. Ovadnevaite, D. Ceburnis, E. Tagliavini (2020). Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmospheric Chemistry and Physics 20: 4193–4207.

Dall’Osto M., J. Ovadnevaite, M. Paglione, D.C.S. Beddows, D. Ceburnis, C. Cree, P. Cortés, M. Zamanillo, S.O. Nunes, G.L. Pérez, E. Ortega-Retuerta, M. Emelianov, D. Vaqué, C. Marrasé, M. Estrada, M.M. Sala, M. Vidal, M.F. Fitzsimons, R. Beale, R. Airs, M. Rinaldi, S. Decesari, M.C. Facchini, R.M. Harrison, C.D. O’Dowd, R. Simó (2017).  Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports 7: 6047.


Rodríguez-Ros P., M. Galí, P. Cortés, C.M. Robinson, D. Antoine, C. Wohl, M.X. Yang, R. Simó. (2020). Remote sensing retrieval of isoprene concentrations in the Southern Ocean. Geophysical Research Letters 47: e2020GL087888.

Galí M., M. Levasseur, E. Devred, R. Simó, M. Babin (2018). Sea-surface dimethylsulfide (DMS) concentration from satellite data at global and regional scales. Biogeosciences 15 : 3497–3519.

Lana A., R. Simó, S.M. Vallina, J. Dachs (2012). Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data. Atmospheric Chemistry and Physics 12: 7977–7993.

Vallina S.M., R. Simó, S. Gassó (2006). What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall. Global Biogeochemical Cycles 20, GB1014.


Simó R. (2004). From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Canadian Journal of Fisheries and Aquatic Sciences 61(5): 673-684.

Galí M., R. Simó (2015). A meta-analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox. Global Biogeochemical Cycles. 29.

Vallina S.M., R. Simó, M. Manizza (2007). Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warmingProceedings of the National Academy of Sciences USA 104: 16004-16009

Rafel Simó

I am interested in ocean biosphere-atmosphere interactions in the Earth System. For nearly 30 years, I have investigated the biological and environmental actors that govern the production and emission of volatile sulfur from the ocean, which I have recently extended to other volatile compounds and gel-like substances. I like to look at both sides of the ocean-atmosphere interface and follow the path of oceanic emissions into aerosols and clouds.

I am also interested in chemical communication between marine organisms, and how this communication shapes trophic interactions and symbioses. 

For my research I count on a network of collaborators and use a broad array of methodologies, from “single-cell biogeochemistry” and omics, and trace gas and aerosol measurements, through experimental plankton physiology and ecology, all the way up to satellite analyses and modeling of the global ocean and atmosphere. I have conducted fieldwork in the Arctic, Antarctica, across the Atlantic, tropical Pacific and Mediterranean Sea.

Institute of Marine Sciences, Barcelona
Telf. +34 932309590
Email: rsimo@icm.csic.es