Novel roles of dimethylated Sulphur in Marine Microbial Interactions

ERC-2018-ADG - ERC Advanced Grant - GA No. 834162
PI: Rafel Simó, Research Professor, Institute of Marine Sciences, Barcelona

Sulphur is an essential element for life that cycles rapidly in the pelagic ocean in the form of biogenic dimethylated compounds. Over three decades, dimethylated sulphur has been intensively investigated for its emission to the atmosphere and its suggested roles in returning sulphur to continents and in climate regulation. While the climate connection still awaits definitive confirmation or denial, these research efforts have provided important advances in plankton physiology and ecology, since these forms of sulphur arise from organism adaptation to saline and sunlit waters and are integral to the food web machinery. Previous studies have disclosed biochemical and trophic cycling pathways and their taxonomic affiliations. Also, evidence for their behaviour as infochemicals in organism-organism communication has been obtained. However, their contribution to the functioning of marine ecosystems remains largely unexplored, particularly with respect to the emerging renewed picture of food webs, where classical functional roles blur and concepts like multifunctional organisms and interdependence become the rule rather than the exception. I propose to bridge microbial physiology, ecology and biogeochemistry to explore new roles of dimethylated sulphur in microbial food-web interactions. I will build upon a combination of molecular tools, isotopes, single-cell analyses, physiological dyes, chemotaxis experiments, modelling, sea-going opportunities and an existing collection of samples from diverse oceanic biomes. Hypothesis-driven research is expected to yield paradigm shifts in (i) phytoplankton-bacteria interactions through nitrogen fixation and vitamin exchange; (ii) phytoplankton-phytoplankton interactions to overcome energy limitation to growth; (iii) phytoplankton-herbivore interactions for selective grazing on weakened prey. Overall, I intend to assess if interactions through dimethylated sulphur make microbial food-webs more robust and efficient.

The SUMMIT project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 834162)


Simó R. (2004). From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Canadian Journal of Fisheries and Aquatic Sciences 61(5): 673-684.

Galí M., R. Simó (2015). A meta-analysis of oceanic DMS and DMSP cycling processes: disentangling the summer paradox. Global Biogeochemical Cycles. 29.

Vallina S.M., R. Simó, M. Manizza (2007). Weak response of oceanic dimethylsulfide to upper mixing shoaling induced by global warmingProceedings of the National Academy of Sciences USA 104: 16004-16009

Rafel Simó

I am interested in ocean biosphere-atmosphere interactions in the Earth System. For nearly 30 years, I have investigated the biological and environmental actors that govern the production and emission of volatile sulfur from the ocean, which I have recently extended to other volatile compounds and gel-like substances. I like to look at both sides of the ocean-atmosphere interface and follow the path of oceanic emissions into aerosols and clouds.

I am also interested in chemical communication between marine organisms, and how this communication shapes trophic interactions and symbioses. 

For my research I count on a network of collaborators and use a broad array of methodologies, from “single-cell biogeochemistry” and omics, and trace gas and aerosol measurements, through experimental plankton physiology and ecology, all the way up to satellite analyses and modeling of the global ocean and atmosphere. I have conducted fieldwork in the Arctic, Antarctica, across the Atlantic, tropical Pacific and Mediterranean Sea.

Institute of Marine Sciences, Barcelona
Telf. +34 932309590